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The science of taphonomy was based on the premise that infor-
mation concerning buried remains may be gathered through field
and laboratory-based analyses of the conditions in which they are
preserved (1). Forensic taphonomy aims to understand the pro-
cesses of decomposition and the factors influencing them while es-
timating postmortem interval (PMI) as well as cause and manner of
death (2). This must be carried out within the constraints imposed
by the legal system. To accomplish this, forensic taphonomy has
incorporated many techniques from a wide range of disciplines.
Fields such as archaeology (3,4), entomology (5,6), soil chemistry
(7), soil microbiology (8) and botany (9,10) have been used to lo-
cate, recover, and analyze clandestine graves.

In recent decades, a number of field experiments and case stud-
ies in mycology have amassed a substantial body of data relevant
to cadaver decomposition. These data have demonstrated that cer-
tain chemoecological groups of fungi can act as above-ground
grave markers in forest ecosystems (11–17). These fungi are
known as ammonia fungi (18) and postputrefaction fungi (19). In
this communication we briefly review the potential for these fungi
to act as clandestine grave markers as well as a tool for the estima-
tion of post-burial interval (PBI).

Grave Markers

Ammonia fungi form fruiting structures (i.e., mushrooms) on
forest soils experimentally treated with urea, ammonium (NH4

�), or
other nitrogenous compounds that release ammonia (NH3) upon

decomposition (18). When these fungi occur naturally (in sites that
have not undergone experimental chemical treatment) they are
termed postputrefaction fungi (19). To date, postputrefaction fungi
have been found in association with decomposed human (14,19),
cat (13,16,17), dog (11,16), crow (20), rabbit (21), snake (12), and
kangaroo (15) cadavers. These cadavers have been in the late
stages of decomposition, when remains include bone and hair.
Sagara (17) also notes adipocere in association with postputrefac-
tion fungi. It is important to note that these fungi have also been
found fruiting in close proximity to excrement (19,22,23)
mouse/mole middens (19,22,24–26) and decomposed wasp nests
(27,28). These reports have come from forests in Australia (12,15),
England (26), Japan (11,13,16,20), North America (14), and
Switzerland (30).

Timely survey of fungal fruiting structures on forest floors could
be used to designate potential graves, thereby reducing the amount
of time required to examine a large area. Typically autumnal or wet
seasons are the most productive for fungal fruiting and hence sur-
veys. These surveys would be appropriate where burial over
months or years is suspected as cadaver-related fruiting would not
occur immediately after burial.

Estimating Post-burial Interval

In order to utilize the fruiting ammonia fungi and postputrefac-
tion fungi as a tool for the estimation of PBI, it is necessary to un-
derstand their fruiting behavior and physiology. Ammonia and
postputrefaction fungi undergo a “succession” of fruiting where
one set of fungi is later replaced by another. This succession has
been divided into early and late stages (18). Early stage fungi com-
prise ascomycetes, deuteromycetes, and saprotrophic basid-
iomycetes (Table 1). These fungi can fruit from one to ten months
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after fertilization of forest floors with urea, NH4
�, or other nitroge-

nous materials that release NH3 upon decomposition (23,31). Late
stage fungi comprise ectomycorrhizal basidiomycetes that can fruit
from one to four years after fertilization (Table 1) (23,31). This
may be due, in part, to nitrogen (N) utilization. Experimental work
suggests that NH3 is the key compound responsible for the fruiting
of these fungi (23,32,33). Most early stage fungi fruit on soils with
high concentrations of NH3 but do not apparently utilize N from ni-
trate (NO3

�) in large amounts (34,35). Late stage fungi utilize or-
ganic N, NO3

�, and NH4
� (34,35). This shift in N utilization might

be anticipated as the formation of NO3
� takes place after NH4

� in the
N cycle (36). The fungal succession associated with cadavers may
be similar to the succession of ectomycorrhizal fungi during forest
development (e.g., 37) and would provide the basis for estimating
PBI. At present, these fruiting stages could be employed only
crudely to estimate if a grave has existed for up to one year or from
one to four years based on the current understanding of early and
late stages.

There are two species of postputrefaction fungi, Rhopalomyces
strangulatus and Hebeloma radicosum, not recognized as ammo-
nia fungi because they have not been found fruiting following
chemical N treatment (19). From this one might hypothesize that
Rhopalomyces strangulatus and Hebeloma radicosum take an ac-
tive role in decomposition rather than relying upon mineralized by-

products (NO3
�, NH4

�) as sources of N. These fungi may utilize or-
ganic N from protein (38) and/or amino acids (39,40). Other ecto-
mycorrhizal fungi (Hebeloma spp.) have taken an active role in the
apparent decomposition and nutrient utilization of seeds in axenic
culture and symbiosis (40,41). Hebeloma spp. also displayed a
preference for organic N (glutamic acid) over mineral N (NH4

�) in
pure culture (40,42). Of these, arctic strains displayed a greater bias
for organic N than temperate strains. This may have implications
for the taphonomic use of postputrefaction fungi in cold climates as
low temperature can regulate soft tissue decomposition (43,44) and
N mineralization (45).

Conclusion

It is generally accepted that fungi are “agents” of decomposition
(46), possibly appearing on the surface of a cadaver (47,48). The
majority of work referring to fungi in the burial environment is
concerned with the modification of hair (49–51), bone (52,53), and
associated materials such as clothing (47,54,55). Ammonia and
postputrefaction fungi represent naturally occurring phenomena
that can act as visible grave markers in forest ecosystems. The suc-
cession of fruiting and N utilization provides the basis for the esti-
mation of PBI. Current evidence suggests that early and late stage
fungi can be viewed roughly as occurring up to one year or from

TABLE 1—Description of ammonia fungi (AF) and postputrefaction fungi (PPF) including nutrient source, associated vegetation, and location.

Fungal Species AF PPF Nutrient Source Vegetation Location Reference

EARLY FRUITING STAGE

Zygomycetes
Rhopalomyces strangulatus � � Mammalian cadaver Not stated Not stated 18,19

Deuteromycetes
Amblyosporium botrytis � � Midden Not stated Not stated 18,19,23

Ascomycetes
Ascobolus denudatus � � Mammalian cadaver, urine, faeces P Japan 18,19
Ascobolus hansenii � � Mammalian cadaver, faeces P-C Japan 19
Tephrocybe tesquorum � � Mammalian cadaver, urine, faeces P Japan 19
Peziza (?) sp.* � � Mammalian cadaver, urine, faeces P-C Japan 18,19
Peziza morovecii† � � Mammalian cadaver, urine, faeces Not stated Not stated 18,19
Coprinus neolagopus � � Mammalian cadaver Not stated Not stated 19
Coprinus phlyctidosporus � � Mammalian cadaver Not stated Not stated 19
Coprinus stercorarius � � Faeces P-Q Japan 19
Crucispora rhombisperma � � Urine, faeces Not stated Not stated 19
Humaria velenovskyi � � Urine, faeces P-C Japan 18,19

LATE FRUITING STAGE

Basidiomycetes
Hebeloma vinosophyllum � � Mammalian cadaver, avian cadaver C, P, Q Japan 11,16,20
Hebeloma aminophilum � � Mammalian cadaver E Australia 12,15
Hebeloma spoliatum � � Mammalian cadaver, wasp nest, midden P, C, Q, P-Q Japan 17,19,22,28
Hebeloma syrjense ? � Mammalian cadaver NA North 14

America
Hebeloma radicosoides‡ � � Mammalian cadaver, wasp nest, midden P, C, Q, P-Q England, Japan 17,19,22,28
Hebeloma radicosum - � Mammalian cadaver, urine, faeces, midden P, F-Q, Q-C Japan 19,24,25
Lactarius chrysorrheus � � Mammalian cadaver, urine, faeces, midden P Japan 19
Laccaria bicolor§ � � Mammalian cadaver P Japan 17
Laccaria amethystine � � Mammalian cadaver Not stated Not stated 19
Laccaria spp. � � Mammalian cadaver, midden Not stated Not stated 19
Lepista nuda � � Urine, faeces Not stated Not stated 19
Suillus luteus � � Midden Not stated Not stated 19
Suillus bovinus � � Midden Not stated Not stated 19
Mitrula sp. � � Mammalian cadaver, faeces Not stated Not stated 19

NOTE: C � Castanopsis cuspidata; E � Eucalyptus spp.; P � Pinus densiflora; Q � Quercus serrata; P-C � Pinus-Chamaecyparis; P-Q � Pinus-
Quercus; F-Q � Fagus-Quercus.
* Gelatinodiscus sp. in Refs 29
† Peziza sp. no. 1 in Refs 19,29.
‡ Hebeloma radicosum in Refs 13,19,29,26,28.
§ Laccaria proxima in Refs 17,18,29.
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Years 1 to 4 following fertilization, respectively (23,31). A defined
relationship between decomposition and fruiting stages near ca-
davers is not clear, and much more detailed experimental work is
required to develop this concept as a forensic tool. Molecular ap-
proaches such as denaturing gradient gel electrophoresis (56) and
fatty acid methyl ester (57) analysis may also have a role in allow-
ing wider microbiological succession to contribute to PBI esti-
mates. It is important to note that ammonia and postputrefaction
fungi do not fruit upon cadaver burial, but the subsequent release
of N during its decomposition. How this relates to cadaver decom-
position is unknown. Thus, it is necessary to determine the quantity
and form of N released from a cadaver during decomposition in or-
der to increase the accuracy of ammonia and postputrefaction fungi
as tools to estimate PBI.
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